

JADE Analysis in the new Millenium

Jochen Schieck Max-Planck-Institut für Physik, München

P. Movilla Fernandez, PHD Thesis, RWTH Aachen M.Blumenstengel, PHD Thesis, RWTH Aachen Phys.Lett.B517(2001)37

Eur.Phys.J.C21(2001)37 Eur.Phys.J.C21(2001)199 Eur.Phys.J.C22(2001)1 Eur.Phys.J.C1(1998)461

Motivation for Reanalysis

JADE provides unique contribution for the energy range between 14 and 44 GeV!
•analysis using FSR-Z⁰ events O(500) / energy point

(Final state radiation)

17 March 2004 DESY Seminar: JADE Analysis at the new millenium

J. Schieck, MPI für Physik, München

Outline of the Talk

- the JADE experiment at PETRA
- resurrection of data and software
- status of QCD at the end of PETRA
- latest results from QCD analysis with JADE-Data
 - measurement of α_{s} with event shapes using resummed calculations
 - power corrections and hadronisation
 - longitudinal and transversal cross-section
 - soft-gluon interference effects

The JADE Revival Group

MPI-PhE/2001-11 June 15, 2001

•RWTH Aachen, MPI München, DESY

S.Bethke, O.Biebel, M. Blumenstengel,

M. Blumenstengel⁽¹⁾, O. Biebel⁽¹⁾, P.A. Movilla Fernández⁽¹⁾, P. Pfeifenschneider^(1,a), S. Bethke⁽¹⁾, S. Kluth⁽¹⁾ and the <u>IADE</u>

Collaboration⁽²⁾

Measurement of the longitudinal and transverse cross-section

in e^+e^- annihilation at $\sqrt{s} = 35-44$ GeV

S. Kluth, P.A. Movilla Fernandez, C. Pahl,

P. Pfeifenschneider, J.E. Olsson and JS

since 1998 more than 20 publications and conference

contributions based on/involving reanalysed JADE data

new JADE results have been considered by various QCD

theory groups and publications from LEP collaborations

The PETRA e⁺e⁻ Storage Ring

Physics at PETRA from 1979-1986

largest e⁺e⁻
accelerator at
that time
luminosity ~ 24x
10³⁰ /cm² s¹
(= 26 hadronic
events/hour)

(hadronic cross section ~ 0.3 nb)

Data Collected at JADE

fixed energy runs and scan periods for t-quark search

CME range (GeV)	Data taking period	Luminosity (pb ⁻¹)	√s (GeV)	MH events
14.0	07-08/1981	1.46	14.0	1734
22.0	06-07/1981	2.41	22.0	1390
33.8-36.0	02/1981-08/1982	61.7	34.6	14372
35.0	02-06/1986	92.3	35.0	20925
38.3	10-11/1981	8.28	38.3	1587
43.4-46.6	06/1984-10/1985	28.8	43.8	3940

LEP (OPAL): 330000 Zeit. fur Phys.C 59 (1993) 1-19

•216 pb-1 •43100 multihadrons

17 March 2004

J. Schieck, MPI für Physik, München

The JADE Experiment

concept similar to the OPAL detector

17 March 2004

DESY Seminar: JADE Analysis at the new millenium

J. Schieck, MPI für Physik, München

Resurrection of Data and Software

the JADE data:

 original data were located at •IBM mainframe at the DESY computer center IBM tapes at DESY/University of Heidelberg •DESY IBM closed completely in 1997 transfer of data to 'modern' data carriers (IBM) /EXABYTE cartridges) and computer platforms (J. Olsson) 'raw' data converted into FPACK format multihadronic event sets are available in platform (E. Elsen) independent ZE4V-ASCII-files ('mini-DST') >used for the current analysis

The Recovery of JADE Data

 however, not all information were available in electronic format...

convert it to electronic version 'the hard way'...

	PIINS	DEAM		and the second
- 13	1954 179/4	DEAM	BARREL	LUMINOSITY
	0000 10004	20.840	0.474029E+02	+- 0.779300E+01
1.	0005 138/2	20.855	0.538850E+02	+- 0.831464E+01
- 13	58/3 13885	20.870	0.719484E+02	+- 0.961650E+01
• 13	3886 13895	20.885	0.694769E+02	+- 0.0656615+01
13	3896 13906	20.900	0 579792E+02	- 0.945461ET01
13	3907 13919	20 915	0 5160085+02	0.004303E+01
13	3920 13931	20 030	0.5100902402	+- 0.816022E+01
- 13	1032 13061	20.950	0.333368E+U2	+- 0.847264E+01
17	062 17057	20.945	0.465800E+02	+- 0.776333E+01
17	054 13933	20.960	0.285056E+02	+- 0.607743E+01
13	954 13963	20.975	0.609841E+02	+- 0.889545E+01
13	964 13973	20.990	0.519744E+02	+- 0.821787F+01
• 13	5974 13980	21.005	0.442404F+02	+- 0 7587175+01
13	981 13989	21.020	0 508176F+02	+- 0 9177765101
13	990 13998	21 035	0 6785105+02	0.013/34E+01
13	999 14009	21 050	0.7700795102	+- 0.940937E+01
- 16	011 16021	21 0/5	0.7709386+02	+- 0.100368E+02
16	022 16071	21.005	0.667339E+02	+- 0.934461E+01
14	072 14031	21.080	0.497930E+02	+- 0.807749E+01
14	032 14043	21.095	0.524870E+02	+- 0.829892E+01
14	044 14054	21.110	0.499324E+02	+- 0.810010E+01
- 14	055 14065	21.125	0 667388F+02	1- 0 7/70/FF101

JADE luminosity files

Monte Carlo events available for √s= 35 and 44 GeV (also ZE4V - ASCII format)
for more MC events the revival of the JADE software necessary

The Revival of the JADE Software

to generate new Monte Carlo Events requires:

- a) detector simulation
- b) event analysis software (reconstruction)
- c) (JADE event display)
- d) multihadronic filtering and packing

Source code:

- •code fragments from 1974 (!)
- mixture of different FORTRAN standards/extensions
- •IBM specific extensions
- •IBM/370 assembler code

The Revival of the JADE Software

- historic research work using old JADE notes/PhDs/ publications necessary
- •move to FORTRAN77, CERNLIB and HIGZ
- platform dependence extremely difficult

IBM: big-endian (most significant byte stored in lowest address) PCs: little-endian (vice versa)

>JADE software accesses BOS-banks not in units of of words (4 Bytes)

•complete installation successful on IBM RS/6000 AIX machine (with XLF compiler)

The Revival of the JADE Software

Event Display

reconstructed points in the Jetchamber, TOF and Calorimeter

J. Schieck, MPI für Physik, München

Event Display

Data versus Monte Carlo

Status of the QCD before LEP

very large dependence on Monte Carlo model
dependence on matrix element calculation
no renormalisation scale variation

What's happened since PETRA

LEP learned a lot from the QCD experience at PETRA, now PETRA profits from LEP

improved theoretical predictions

•(resummed calculations for event shapes,...)

development of new event-shape
 variables

•new jet finders (Durham, Cambridge)

improved Monte-Carlo models

power corrections

Hadronic Final States

cross section for $e^+e^- \rightarrow$ hadrons

Event Shapes

Event Shapes

- •Thrust (1-T)
- •Heavy Jet Mass (M_{H}^{2})
- •Jet Broadening $(B_T, B_W)^*$
- C Parameter*
 Differential 2-jet rate y₂₃*
 (Durham scheme)

infrared and
collinear safe
quantities
resummable in
all orders
α_sln (1/F)

 $F=1-T, C, M_{H}^{2}, ...$

*) Event Shape variables only used after shutdown of PETRA

Event Shape: Thrust

Event Shapes

•Heavy Jet Mass $(M_H)^2$

event divided in two hemispheres using thrust axis M_{H} = max (inv. mass of hemisphere)_{I=1,2}

•Jet Broadening (B_T, B_W)

momentum of hadrons in one Hemisphere perpendicular to thrust axis maximum (B_W) and total (B_T) B_T : 0 $\leq 1/(2\sqrt{3}) \leq 1/(2\sqrt{2})$ B_W : 0 $\leq 1/(2\sqrt{3}) \leq 1/(2\sqrt{3})$

• C Parameter

average angle between hadron pairs weighted with momentum (eigenvalues of linearised momentum tensor) $0 \le 3/4 \le 1$

•Differential 2-jet rate y_{23} (Durham scheme)

 y_{cut} value, when an event switches from 2-Jet type to 3-Jet type

Jetfinder: JADE \rightarrow Durham!

<u>≤1/3</u> <u>≤1/2</u>

0

QCD Predictions

• $O(\alpha_s^2)$ calculations, (3 jet region):

(used for PETRA QCD analysis in the 80's)

$$\frac{dR}{dF} = \frac{1}{\sigma_0} \frac{d\sigma}{dF} = \frac{dA(F)}{dF} \frac{\alpha_s(\mu)}{2\pi} + \frac{dB(F)}{dF} \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 + O\left(\left(\frac{\alpha_s(\mu)}{2\pi}\right)^3\right)$$
•Problem:

no good description for $F \rightarrow 0$ (divergent)

 take large logarithmic L=ln(1/F) contribution into account (NLLA)

$$R(F) = \int_0^F dF' \frac{1}{\sigma_0} \frac{d\sigma(F')}{dF'} = C(\alpha_s) e^{G(\alpha_s,L)} + D(\alpha_s,L)$$

$$R(F) = (1 + C_1 \alpha_s + C_2 \alpha_s^2) e^{Lg_1(\alpha_s L) + g_2(\alpha_s L)} \quad \text{with } L = \ln(1/F)$$

QCD Predictions

•match both calculations $O(\alpha_s^2)$ + NLLA:

$$\ln(R(F)) = Lg_{1}(\alpha_{s}L) + g_{2}(\alpha_{s}L)$$
$$-(G_{11}L + G_{12}L^{2})(\alpha_{s}/2\pi)$$
$$-(G_{22}L^{2} + G_{23}L^{3})(\alpha_{s}/2\pi)^{2}$$
$$+ A(F)\frac{\alpha_{s}}{2\pi} + (B(F) - \frac{1}{2}A(F)^{2})(\frac{\alpha_{s}}{2\pi})^{2}$$

•dependent from renormalisation scale μ •fit perturbative predictions with scale factor $x_{\mu}=\mu/Js=1$

· $\alpha_{\rm s}$ as the only free parameter

(avoid double counting!)

Correction Procedure

- measured distribution needs to be corrected for
- imperfect detector ('detector correction')
 - •subtract bb-background on detector level >see following slide
 - resolution, acceptance and secondary processes
 - photon initial state radiation (ISR)
- •QCD calculations describe parton level of event shape distribution
 - correction for hadronisation effects ('hadronisation correction')

Monte Carlo Models

PT QCD: $\cdot O(\alpha_s^2)$ +NLLA \cdot parton shower

NP QCD:
models (string, cluster,...)
analytic power corrections

Detector Level Distributions

Monte Carlo + JADE simulation reproduces multihadronic events

Monte Carlo models: •PYTHIA/JETSET

- LLA parton shower + string
- ·ARIADNE
 - color dipole + string

·HERWIG

- MLLA parton shower + cluster
- •COJETS
 - •LLA parton shower + independent

Correction for bb-Events

~about 9% bb-events

 bb events fakes events with gluon radiation (electro weak decay)

>subtraction at detector level

Correction Method

α_s Results

√s (GeV)	α _s (√s)	Fit error	Exp.	Hadr.	Higher order	Total
14.0	0.1704	±0.0051		+0.0141 -0.0136	+0.0143 -0.0091	+0.0206 -0.0171
22.0	0.1513	±0.0043		±0.0101	+0.0101 -0.0065	+0.0144 -0.0121
34.6('82)	0.1409	±0.0012	±0.0017	±0.0071	+0.0086 -0.0057	+0.0114 -0.0121
35.0('86)	0.1457	±0.0011	±0.0020	±0.0076	+0.0096 -0.0064	+0.0125 -0.0101
38.3	0.1397	±0.0031	±0.0026	±0.0054	+0.0084 -0.0056	+0.0108 -0.0087
43.8	0.1306	±0.0019	±0.0032	±0.0056	+0.0068 -0.0044	+0.0096 -0.0080

 $\alpha_{s}(M_{z})^{34.8}=0.122\pm0.002\pm0.008$ $\alpha_{s}(M_{z})^{Lep1}=0.121\pm0.001\pm0.006$ S.Bethke, hep-ex/0211012

identical with exp. errorsimilar significance

Power Corrections

remember: QCD calculations predict only distribution on parton level

 large uncertainties due to hadronisation modeling with Monte Carlo with quite a few free parameters

Power Corrections:

 perturbative treatment of hadronisation leads to divergences

•separate effects at large Scale (PT) and small scale (PC)

Power Corrections

 μ_{T} : separation between PT and NP

$$\alpha_0(\mu_I) \equiv \frac{1}{\mu_I} \int_0^{\mu_I} \alpha_S(\mu) d\mu$$

$$\frac{\langle F \rangle = \langle F \rangle^{PT} + D_F P}{\frac{d\sigma(F)}{dF} = \frac{d\sigma^{PT}(F - D_F P)}{dF}}$$

 $D_F = a_F \cdot \ln(1/F) + F_F \quad F=B_T, B_W$ $D_F = const. \quad F=1-T, M_H^2, C$

universal parameter

$$P = \frac{4C_F}{\pi^2} M \frac{\mu_I}{Q} \left[a_0(\mu_I) - \alpha_s(\mu_R) - \beta_0 \frac{\alpha_s^2}{2\pi} \left(\ln(\frac{\mu_R}{\mu_I}) + \frac{K}{\beta_0} + 1 \right) \right]$$

Dokshitzer-Marchesini-Webber (DMW) structure of power corrections (1996)

J. Schieck, MPI für Physik, München

Fit to Distributions

1. α_s strong coupling 2. α_0 universal parameter for all event shapes

 χ^2 =181/216 d.o.f

α_s, α_0 Fits to Mean Values

α_s, α_0 Fit Results

Distribution	Fit	Stat	Ехр	Theo	Mean Values	Fit	Stat	Ехр	Theo
α _s (M _{Z°})	0.1126	±0.0005	±0.0037	+0.0044 -0.0030	α _s (M _{Z°})	0.1187	±0.0014	±0.0001	+0.0028 -0.0015
α ₀ (2 GeV)	0.542	±0.005	±0.032	+0.084 -0.060	α ₀ (2 GeV)	0.485	±0.013	±0.001	+0.065 -0.043

17 March 2004

Comparison MC vs PC

Color Structure from Event Shapes

perturbative prediction $A=A(C_F)$

 $B=B(C_A, C_F, n_f)$ $NLLA=NLLA(C_A, C_F, n_f)$

power corrections

 $M=M(C_A,n_f)$

 $P=P(C_A, C_F, n_f)$

 $D_F = D_F (C_A, C_F, n_f)$

sensitivity from radiative corrections

17 March 2004 DESY Seminar: JADE Analysis at the new millenium

J. Schieck, MPI für Physik, München

Color Structure from Event Shapes

Measurement of σ_{L} and σ_{T}

Measurement of σ_{L} and σ_{T}

 $\sigma_{\rm L} / \sigma_{\rm tot} = 0.067 \pm 0.013$ measur ement: 0.12 **QCD** calcula $\left(\frac{\sigma_L}{\sigma_{tot}}\right)_{DT} = \frac{\alpha_s}{\pi} + 8.444 \left(\frac{\alpha_s}{\pi}\right)^2$ 0.1 0.08 0.06 $\alpha_{s}(36.6 \text{ GeV})=0.150\pm0.02$ 0.04 α_s(M_{7°})=0.127±0.018 0.02 (def. Analysis: $\alpha_{c}(M_{7^{\circ}})=0.1194 \pm 0.008 \text{ (stat.)})$ 0 40 50 60 80 100 20 30 Power Correction for σ_l/σ_{tot} : α_s(M_{Z°})=0.126±0.025 α₀(μ_i)=0.3±0.3 $\delta_{PC} = \frac{8M}{3\pi} \frac{\mu_I}{O} \left(\alpha_0(\mu_I) - \alpha_S \right)$

200 E_{cm}/GeV

★ JADE

• OPAL

▲ DELPHI

 \cdots QCD O(α_s^2)

JETSET hadrons

JETSET partons

Measurement of $\xi = \ln (1/x)$

Tests of soft QCD predictions

x=2p/√s

Input:

- next-to-leading-log-Approximation (NLLA)
- local parton hadron duality (LPHD) properties of partons at end of shower similar to hadrons

Prediction:

- $\boldsymbol{\cdot}$ shape around peak and $\boldsymbol{\mathcal{I}}\boldsymbol{s}$ dependence
- •effects of heavy quarks

Measurement of $\xi = \ln (1/x)$

Fit to distribution (skewed gaussian):

Measurement of $\xi = \ln (1/x)$

fit NLLA (Fong, Webber) Λ_{eff} , N and $\langle \xi \rangle, \xi^0$ or O(1)

Outlook

•un-FPACK raw JADE data •running of α_s using 1st-3rd moment and power corrections

•measurement of α_s using 4-Jet events and $O(\alpha_s^3)$ calculations

Conclusion (I)

 $\cdot O(\alpha_s^2)$ + NLLA calculation first time applied to PETRA data

recent JADF results

 $\alpha_{s}(M_{7^{\circ}})=0.1194^{+0.0082}-0.0068}$ (PETRA) $\alpha_{c}(M_{7^{\circ}})=0.121\pm0.006$ (LEP+SLC) α_s(M_{7°})=0.120±0.007(LEP2)

S.Bethke, hep-ex/0004021

consistent with other measurement and methods

Conclusion (II)

•universality of α₀
confirmed within 20%
confidence level
•SU(3) structure of QCD
confirmed

 $\alpha_{s}(M_{Z^{\circ}})=0.1175^{+0.0031}_{-0.0021}$ $\alpha_{0}(2GeV)=0.503^{+0.066}_{-0.045}$

•measurement of α_s with σ_L / σ_{tot} •energy dependence of ln(1/x) spectra

A Comment on archiving...

Description of finished experiments can provide valuable sources for future analysis •was the 'Pentaguark' already at LEP visible? •where was the $(D_{s}^{\dagger}\pi^{0})$ resonance before BaBar? In analysis without reconstruction software and the corresponding documentation (!) Deplatform independent software simplifies running the code in the future

enforce the compilation and running of the software on several different machines

Conclusion

- data and software from the JADE experiment were successfully resurrected data was used to perform state-of-the-art QCD studies at $\sqrt{s} < M_{70}$ results provide stringent tests of perturbative and non-perturbative aspects of QCD
- Keep the data and software alive, it's worth it

Backup Slides

Power Correction

Log. Enhancement ~ InQ/Q yields better description of data $1/Q^2$ corrections for y₂₃ Fit: pQCD+A₁₀/Q+A₂₀/Q²

Flavor Dependence

 ξ^{0} -Beschreibung mit drei Fitparametern ີ້ມ χ^2 /d.o.f = 0.124 $\Lambda_{u,d,s} = (0.184 \pm 0.032) \text{ GeV}$ $\Lambda_c = (0.239 \pm 0.090) \text{ GeV}$ JADE 4.5 $= (0.247 \pm 0.028) \text{ GeV}$ **OPAL** 4 3.5 3 2.5 2 $10^{\overline{2}}$ 10 \sqrt{s} (GeV)

•determine Λ_b and Λ_c from flavour composition and direct measurement at the Z⁰

Renormalisation Scale

Hadronic Event Selection

JADE vs OPAL Experiment

	Parameter	•	JADE	OPAL	
D:	overall length		8 m	12 m	
Dimensions	overall height		7 m	$12 \mathrm{m}$	
	dimension	length	2.4 m	4 m	
	ou	ter radius	0.8 m	$1.85 \mathrm{~m}$	
	transv. momentum	A	0.04	0.02	
	resolution $\sigma(p_t)/p_t$ B		0.018	0.0015	
	spatial	$r-\phi$	$180 \ \mu m / 110 \ \mu m$	$135~\mu{ m m}$	
	resolution	z	$1.6~{ m cm}$	$4.5-6 \text{ cm} (100-350 \mu \text{m})$	
	double hit resol.		7.5 mm/2 mm	$2.5 \mathrm{~mm}$	
Tracking	gas composition		88 7%/8 5%/2 8%	88%/9.4%/2.6%	
system	argon/methane/isobu	tane	00.17070.07072.070		
	gas pressure		4 bar	4 bar	
	max. no. of hits		48	159	
	reachable in		$0.83 \cdot 4\pi$	$0.73 \cdot 4\pi$	
	at least 8 hits		$0.97 \cdot 4\pi$	$0.98 \cdot 4\pi$	
	reachable in		0.07 1		
	magnetic field		0.48 T	$0.435 \mathrm{~T}$	
	energy A		0.015	0.002	
	resolution $\sigma(E)/E$ B		0.04	0.063	
	solid angle coverage		90%	98%	
	angular resolution		7 mrad	2 mrad	
	radial extent		1—1.4 m	2.5—2.8 m	
Electromagnetic	length		$3.6 \mathrm{m}$	7 m	
calorimetry	barrel polar ang	le covered	> 32°	$> 36^{\circ}$	
	radiat	ion depth	$12.5X_0/15.7X_0$	$24.6X_{0}$	
	g	ranularity	$8.5 imes 10 ext{ cm}^2$	$10 \times 10 \text{ cm}^2$	
	outer radius		0.9 m	1.8 m	
	endcap polar ang	le covered	> 11°	> 11°	
	radiat	tion depth	$9.6X_0$	$22X_0$	
	g	ranularity	$14 \times 14 \text{ cm}^2$	$9 \times 9 \text{ cm}^2$	