α_{S} in e⁺e⁻ collisions at LEP and JADE

XXIII International Conference on High Energy Physics, Moscow 2006

Jochen Schieck

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

submitted papers:

- 1. L3, Studies of Hadronic Event Structure in e+e- Annihilation from 30 GeV to 209 GeV with the L3 Detector, Phys. Rept. 399:71 (2004)
- 2. OPAL, Determination of α_s Using Jet Rates at LEP with the OPAL Detector, EPJ C45: 547 (2006)
- OPAL, Measurement of the Strong Coupling α_s from Four-Jet Observables in e⁺e⁻ Annihilation, accepted by EPJ C
- 4. JADE, Measurement of the Strong Coupling α_s from Four-Jet Observables in e⁺e⁻ Annihilation using JADE data, accepted by EPJ C

e⁺e⁻ Data Sample

•JADE (14-44 GeV): bb-events subtracted •LEP I (91 GeV): no background

	energy range [GeV]	events per energy point
JADE	14-44	1k – 20k
LEP	30-86*	1k-3k
	91	> 100k
	130-209	0.5k – 5k

* radiative return events
•assumes factorization gluon from photon production
(Dasgupta, Salam : hep-ph/0312283)

LEP I.5 (> 130 GeV):
radiative return events subtracted
LEP II (>160 GeV): W⁺W⁻
events subtracted

Measurement of α_{S} using Event Shapes

-size of α_{S} proportional to the number of radiated gluons -gluon radiation pictured by event shapes variables

Hadronization with Power Corrections

- determine 1st moment of event shapes
 - mean value $\langle F \rangle = \int F \frac{1}{\sigma} \frac{d\sigma}{dF} dF$
 - sample full region of phase space
- QCD predictions at parton level (NLO)
- apply hadronization correction
 - $Power Corrections: DMW approach, hadronization corrections described with single parameter <math display="inline">\alpha_0$
- confidence level for common α_0 : 1% (stat. only)

(DMW: theoretical uncertainty ~20%)

 α_{s} = 0.1126±0.0045±0.0039 α_{0} = 0.478±0.054±0.024

(stat±systematic)

Hadronizaton using Monte Carlo Models

- apply fit to event-shape distribution (only part of the distribution fitted)
- describe hadronization correction with Monte Carlo models

Measurement of α_s using Jet Rates

number of jets reflects strength of the strong coupling α_{S}

Measurement of α_{s} using Jet Rates

average jetrate

$$\langle N \rangle (y_{cut}) = \frac{1}{\sigma_{tot}} \sum_{n} n \sigma_{n}(y_{cut})$$

• differential 2-jet rate y_{23} ¹⁶⁰ apply NLO+NLLA QCD calculations ¹⁴⁰ $R_3 = \alpha_s A + \alpha_s^2 B + O(\alpha_s^3) + NLLA terms^{120}$

(stat±exp±had±theo)

uncertainty dominated by theory

alpha_S in e+e- collisions (LEP, JADE) - Jochen Schieck - MPI für Physik, Münche

Measurement of α_{s} using Four-Jet Rate

Measurement of α_s using Four-Jet Rate

 resurrection of data taken with the JADE detector allows unique access to e⁺e⁻ data taken at 14 GeV
 ≤ √ s ≤ 44 GeV

more than 40k
multihadronic events
data well described by
Monte Carlo models tuned
at LEP 1 (OPAL)

similar sensitivity to α_s like LEP measurements

Measurement of α_s using Four-Jet Rate

Running of Strong Coupling α_{S}

	running $\alpha_{\rm S}$ χ^2 /d.o.f. χ^2 probability	$\begin{array}{l} \text{constant } \alpha_{\text{S}} \\ \chi^{\text{2/d.o.f.}} \\ \chi^{\text{2}} \text{ probability} \end{array}$
JADE	3.9/5	7.0/5
14-44 GeV	57%	22%
OPAL	6.4/12	12.4/12
91-209 GeV	90%	42%
JADE+OPAL	12.0/18	149.5/18
14-209 GeV	85%	9 x 10 ⁻²¹ %
	α	α
	_s =0.1168±	_s =0.1227±0
	0.0024	.0025

combination of α_{s} values using description of LEP QCD WG

-JADE data alone return no significant proof for running of α_s -LEP alone consistent with being constant

 $\label{eq:stability} \textbf{b} combination of LEP and JADE date confirms running of α_{s} with high significance$

Measurement of α_s using Event Shape Observables ~ α_s^2

perturbative predictions for D-Parameter and T_{Minor} only available in NLO •no resummed calculation available •data not well described •increased scale sensitvity

D-Par: α_{s} = 0.1047±0.0014±0.0088 T_{Min}: α_{s} = 0.1318±0.0016±0.0126

(stat±syst.)

Conclusion

- still ongoing QCD analysis at LEP
- all measurements return values of $\alpha_{\rm S}$ consistent with the current world average
- α_S determined from the four-jet rate leads to smaller scale uncertainty
- LEP and JADE data combined confirm running of α_{s} with high significance