New QCD Studies with the Resurrected JADE Data

Pedro A. Movilla Fernandez Max-Planck-Institut für Physik München

Outline

- Motivation
- The Experiment
- Revival of Data and Software
- QCD studies
 - Hadronic Event Shapes in e⁺e⁻ Annihilation
 - Strong Coupling Constant
 - Power Corrections
 - QCD Colour Factors
 - Longitudinal Cross Section
 - Momentum Spectra
- Conclusions

Motivation

- Explore perturbative and non-perturbative
 QCD effects at low energy scales Q
 - large leverage for predictions:

PT effects ∝ 1/log(Q)
NP effects ∝ 1/Q (typically

NP effects ∝ 1/Q (typically for event shapes)

interplay between hard and soft QCD best studied at "medium" energies

- JADE data: unique contribution for @ 14-44 GeV
- Test improved/new calculations from the LEP era at PETRA energies
 - New hadronic observables
 - New perturbative calculations
 - New MC models
 - New non-perturbative analytical approaches

as @ PETRA Times

1979 MARK-J Coll.:

– First direct measurement α_s based on LO for the Oblateness variable

1979+
$$a_s = 0.15 \dots 0.23$$
 @ $\sqrt{s} = 30 \text{ GeV}$

based on LO predictions

1982 CELLO Coll., JADE Coll.:

– first significant measurements of α_s NLO for Thrust and Differential 3 Jet Cross Section

1982+
$$a_s$$
 (35GeV) = 0.11... 0.19

based on NLO predictions

...inconsistent results due to

- incomplete QCD matrix elements
- fragmentation models

Status of a_s in 1989

Summary value 1989:

 $\alpha_{\rm S}$ (35GeV) = 0.14 ± 0.02

Use LEP techniques at PETRA energies

- to increase the precision
- to allow better comparison of results (values+systematics) over a wide range of e⁺e⁻ annihilation energies

The Experiment

The PETRA e⁺e⁻ Storage Ring

The PETRA e⁺e⁻ Storage Ring

Operated 1978-1986 at DESY, Hamburg

PLUTO (from 09/1978 on)
CELLO (replacing PLUTO from 08/1982 on)

C.M.S. Energies and Luminosities

- Fixed energy runs
- Scan periods (Top quark search)
- By far most data accumulated at $\sqrt{s} = 35 \text{ GeV}$
- Total integrated lumi: 216 pb⁻¹
- Peak lumi: 24 μb⁻¹s⁻¹
 - \Rightarrow 26 multihadrons per hour @ σ^{had} =0.3 nb
- Clean multihadrons: 43100

The JADE Experiment

Participating states:

JApan (Tokyo), Deutschland (DESY, Hamburg, Heidelberg), England (Lancaster, Manchester, RAL), USA (Maryland)

≈ 120 collaborators in total

JADE is a magnetic, hermetic multipurpose detector:

Jet Chamber

```
Track curvature + dE/dx measurement, B = 0.48T 48 wire layers in r\varphi \sigma_{r\varphi}=180\mum (110\mum), \sigma_z=16-32mm (OPAL: \sigma_{r\varphi}=135\mum, \sigma_z=45-60mm)
```

E.M. Calorimeter

```
\approx 2700 Lead Glass blocks (individually calibrated) 
 \sigma_{\rm E}/{\rm E} = 4%/\sqrt{\rm E}+1.5% 
 (OPAL: \sigma_{\rm E}/{\rm E} = 6.3%/\sqrt{\rm E}+0.2%)
```

Muon System
 up to 5 chamber layers / 3 absorber layers

The Detector

Overall length/height: 8m/7m

(OPAL: 12m/12m)

The Detector

Revival of Data and Software

The JADE Revival Group

- RWTH Aachen, MPI Munich, DESY
 S. Bethke, O. Biebel, M. Blumenstengel, S. Kluth,
 P.A.M.F., C. Pahl, P. Pfeifenschneider,
 and J.E. Olsson
- Since 1998: 20+ publications/conference contributions based on/involving the reanalysed JADE data
- New JADE results considered in numerous publications from LEP collaborations / QCD theory groups
- Inspires a LEP working group to address the difficult question of keeping data and software of LEP collaborations alive

Resurrection of the JADE Data ...

- Original data were located on
 - IBM mainframe at the DESY computer centre
 - IBM tapes at DESY/Heidelberg U.
- DESY IBM completely closed July 1997
 - Last-Minute transfer to "modern" data carriers (IBM/EXABYTE cartridges) and computer platforms
- Now: data partially reside on CERN Castor tapes, DVDs ...
- Data organisation mainly based on the data management system BOS (version 1979)
 - Raw Data (REDUC1/REDUC2): BOS banks converted into FPACK (platform independent, still need to reconvert)
 - MH data sets (ZE4V) converted into ASCII (used for reanalyses)

... and of the JADE Software

- Detector simulation
 - detailed particle tracking, detector response, inefficiencies, resolution
- Event analysis software
 - pattern recognition, cluster analysis ...
- JADE interactive graphics
 - event display, event analysis, event editing
- MH filtering and packing software

Source Code

- Code fragments date from 1974 on
- Mixture of different FORTRAN standards (FORTRAN IV, FORTRAN 77)
- "Illegal" IBM extensions
- Ancient pre-compiler languages (SHELTRAN, MORTRAN)
- IBM/370 assembler code

Big parts are extremely unstructured "spaghetti" code, badly documented!

Tasks

- Extract knowledge and information from incoherently spread sources (nontrivial "archaeological" challenge)
 Code modification
 >JADE Computer Notes
 JADE Notes
 JADE PhD theses
 Manual fragments
 Source code
- Emulation interfaces
 (missing libraries, IBM FORTRAN intrinsics ...)

Platform dependent features extremely problematic!!!

- Bit&Byte manipulation
- Endian convention (byte storage order)

Complete installation succeeded on IBM RS/6000 AIX!

- XLF compiler advantageous
- same endian scheme as IBM/370

Performance I (Jet Chamber)

Pythia Jetset(J) Ariadne

♦ JADE

Integral quantities:

N^(ch),

 $E_{vis}^{(ch)}/\sqrt{s}$, $p_{tot}^{(ch)}/\sqrt{s}$,

MPI Colloquium "QCD Studies with the Resurrected JADE Data"

Performance II (Jet Chamber)

Particle spectra:

 $p_t^{(ch)}$, $p_t^{(ch), in}$, $p_t^{(ch), out}$,

June 17th, 2003

Jetset(J)

Performance III (Lead Glass)

L Pythia Jetset(J) Ariadne

♦ JADE

Integral quantities:

 N_{γ} , E_{γ}/\sqrt{s} , $p_{tot}^{(neu)}/\sqrt{s}$,

• • •

Performance IV (Lead Glass)

Particle spectra:

p_t(neu), p_t(neu), in, p, (neu), out,

♦ JADE Pythia

Jetset(J)

Revival Summary

- JADE software works reliably
- JADE simulation capable of reproducing most integral observables and particle spectra measured with the real detector
- JADE simulation usable for the correction of physical quantities, e.g.:
 - Event shape observables
 - Momentum spectra
 - ...

QCD Studies

Hadronic Final States

Cross section for e⁺e⁻ → hadrons:

- σ^{had} (PETRA) = 0.1...10nb $\approx 1/100\sigma^{had}$ (M_Z)
- Hadron production at PETRA energies mainly via γ^* exchange

June 17th, 2003

QCD in e⁺e⁻ Annihilation

PT QCD:

- $O(\alpha_S^2)$, NLLA, ...
- Parton shower MC

NP QCD:

- Phenomenological hadronisation models
- Analytical power corrections

35 GeV

1 GeV

Multihadronic Selection

Main Selection Cuts:

- 4 tracks from vertex region
- 3 "long + good" tracks
- Visible Energy > 0.5.√s
- Momentum balance < 40%
- Missing Momentum < 0.3√s
- $|\cos \Theta_{\mathsf{T}}| < 0.8$

Residual background ≈ 1%

- $e^+e^- \rightarrow e^+e^- \gamma \gamma$
- $e^+e^- \rightarrow \tau^+\tau^-$

MH data samples for main analyses:

\sqrt{s} -range [GeV]	data taking period	\mathcal{L} $[pb^{-1}]$	$\langle \sqrt{s} \rangle$ [GeV]	MH data
14.0	JulAug. 1981	1.46	14.0	1734
22.0	JunJul. 1981	2.41	22.0	1390
33.8 - 36.0	Feb. 1981 - Aug. 1982	61.7	34.6	14372
35.0	FebNov. 1986	92.3	35.0	20925
38.3	OctNov. 1981	8.28	38.3	1587
43.4 - 46.6	Jun. 1984 - Oct. 1985	28.8	43.8	3940

Hadronic Event Shapes

- Quantify the shape of an event by a single number.
- Example: "Thrust"

$$T = \max_{\vec{n}} \left(\frac{\sum_i |\vec{p_i} \vec{n}|}{\sum_i |\vec{p_i}|} \right)$$

QCD expectation:

Event shape observables are sensitive to PT and NP effects!

Detector Level Distributions

June 17th, 2003

bb Events

Pythia event @ 14 GeV

- 9% fraction
- fake hard gluon radiation due to electroweak decays + mass effects
- 14 GeV: up to 50%
 contamination in extreme
 3 jet region

Treat as "background" in view of later comparison with massless QCD calculations!

More Event Shapes

Thrust T

Thrust
$$T$$

$$T = \max_{\vec{n}} \left(\frac{\sum_{i} |\vec{p_i} \vec{n}|}{\sum_{i} |\vec{p_i}|} \right) \Rightarrow \text{thrust axis } \vec{n_T} \text{ event hemispheres } H_k \Rightarrow B_k = \frac{\sum_{i \in H_k} |\vec{p_i} \times \vec{n_T}|}{2\sum_{i} |\vec{p_i}|}, k = 1, 2$$

Heavy Jet Mass M_H

$$M_{\rm H}^2 = \frac{\max(M_1^2, M_2^2)}{(\sum_i E_i)^2}$$

Total/Wide Jet Broadening B_T , B_W

$$B_{\text{T}} = B_1 + B_2$$

 $B_{\text{W}} = \max(B_1, B_2)$

C Parameter

$$\begin{split} \Theta^{\alpha\beta} &= \frac{\sum_i (p_i^\alpha p_i^\beta)/\left|\vec{p_i}\right|}{\sum_i \left|\vec{p_i}\right|}\;, \quad \alpha,\,\beta = 1,\,2,\,3 \\ &C = 3(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1) \end{split}$$

• Calculate eigenvalues λ_i from linearised momentum tensor.

Differential 2 Jet Rate y_{23} (Durham Scheme)

$$y_{ij} = \frac{2 \min(E_i^2, E_j^2)(1 - \cos \vartheta_{ij})}{(\sum_k E_k)^2}$$

 $\frac{dR_2(y_{\text{cut}})}{dy_{\text{cut}}} = \frac{1}{\sigma} \frac{d\sigma(y_{23})}{dy_{23}}$.

- Define jet resolution parameter y_{ii}.
- Combine particles i, j with smallest y_{ij} into pseudo particles and proceed until $y_{ij} > y_{cut}$ for 2 remaining pseudo particles ("jets").

Measurement

Observables: y=1-T, M_H , B_T , B_W , C, y_{23}

- Infrared and collinear safe quantities
- Resumable in all orders $\alpha_s \log (1/y)$ (important in 2 jet region)

Perform MC based corrections to measured distributions

- bb-fraction on detector level
 - reduces mass effects
- Detector effects
 - Resolution, acceptance, secondary processes
- MH selection
 - acceptance
- Photon ISR

Hadron level distributions comparable with QCD predictions

QCD Models

- PYTHIA/JETSET:
 - LLA parton shower + string fragmentation
- ARIADNE:
 - colour dipole scheme + string fragmentation
- HERWIG:
 - MLLA parton shower + cluster fragmentation
- COJETS:
 - LLA parton shower + independent fragmentation

Use LEP versions tuned to OPAL data

Try also former JADE optimisation for JETSET 6.3

Hadron Level

Bin-by-bin unfolding with correction factors $K_i = MC_i^{had}/MC_i^{det}$ based on udsc samples:

- PYTHIA
 - good overall consistency
- HERWIG/ARIADNE
 - moderate at 14+22 GeV, better at higher √s
- JETSET (JADE)
 - good at 14+22 GeV, slightly worse at higher √s
- COJETS
 - disfavoured at 14+22 GeV, remains worse at higher √s

Event shape become more and more 2 jet like at higher energies

Matrix vs. Bin-by-Bin Unfolding

- Consistent hadron levels
- Detector effects partially compensate ISR

Determination of the a_s

- PT prediction for the cumulative cross section $R(y) = \int_{0}^{y} dy' 1/\sigma \cdot d\sigma/dy'$
- I. NLO: describes "hard" gluon contribution $R(y)=1+A(y)\cdot\alpha_s+B(y)\cdot\alpha_s^2$
- II. NLLA: describes "soft" gluon contribution $R(y) = (1 + C_1 \cdot \alpha_S + C_2 \cdot \alpha_S^2) \exp\{Lg_1(\alpha_S L) + g_2(\alpha_S L)\}$ L = In(1/y)
- III. Combination of NLO+NLLA, e.g.: In(R) matching In(R) = Lg₁(α_s L)+g₂(α_s L) $-(G_{11}$ L+G₁₂L²)· α_s -(G₂₂L+G₂₃L²)· α_s ²
 +A(y)· α_s +[B(y)- ½ A(y)²]· α_s ²

- NP effects: PYTHIA, JETSET(JADE), ARIADNE, HERWIG
- Fit α_s with renormalisation scale factor $x_{\mu}=\mu/\sqrt{s}=1$ + bin-by-bin hadronisation correction of R(y) (standard=PYTHIA)

Fit Curves

- Typically $\chi^2/d.o.f. = 0.5...2.0$
- Stable Fits
- Large hadronisation corrections at 14 GeV!
- Problems with B_W

a_s Results

- Similar scattering of individual results due to missing higher order terms, but...
- ...results consistent within
 1-2σ of experimental errors
- x_μ dependence significantly smaller w.r.t. pure NLO results!
- Dominant errors:
 - Renormalisation scale
 - Hadronisation (14+22GeV!)
 - Mass effects (14+22GeV!)

$\langle \sqrt{s} \rangle$ [GeV	$]$ $\alpha_{\rm S}(\sqrt{s})$	fit error	exp.	hadr.	higher ord.	total
14.0	0.1704	±0.0	051*	$^{+0.0141}_{-0.0136}$	$^{+0.0143}_{-0.0091}$	$^{+0.0206}_{-0.0171}$
22.0	0.1513	±0.0	043*	± 0.0101	$^{+0.0101}_{-0.0065}$	$^{+0.0144}_{-0.0121}$
34.6 ('82)	0.1409	±0.0012	± 0.0017	± 0.0071	$^{+0.0086}_{-0.0057}$	$^{+0.0114}_{-0.0093}$
35.0 ('86)	0.1457	±0.0011	±0.0020	±0.0076	$^{+0.0096}_{-0.0064}$	$^{+0.0125}_{-0.0101}$
38.3	0.1397	± 0.0031	±0.0026	± 0.0054	$^{+0.0084}_{-0.0056}$	$^{+0.0108}_{-0.0087}$
43.8	0.1306	±0.0019	±0.0032	± 0.0056	$^{+0.0068}_{-0.0044}$	$^{+0.0096}_{-0.0080}$

Renormalisation Scale

- NLO+NLLA: reduced x_{μ} dependence around x_{μ} =1 compared to NLO
 - $\alpha_{\rm S}(\sqrt{\rm s}, {\rm x_u}=1)$ more consistent than in NLO case
 - But: sizable α_S dependence around x_u =1 still present
- Pure NLO: Preference for small $x_{\mu}^{(opt)} = O(0.01...0.5)$
 - scale dependence around $x_{\mu}^{(opt)}$ sometimes smaller, but...
 - less consistent individual results
 - (α_S, x_u) fits not always stable, large statistical errors
 - no strong theoretical arguments for the choice $x_{\mu} = x_{\mu}^{(opt)}$
 - \Rightarrow have to consider **both** $\alpha_{S}(\sqrt{s}, x_{\mu}=x_{\mu}^{(opt)})$ **and** $\alpha_{S}(\sqrt{s}, x_{\mu}=1)$ NLO+NLLA @ $x_{\mu}=1$ seems to be the "natural" choice

Test of the Running of as

 QCD fit, exp.+stat. uncertainties (inner error bars):

$$\Lambda_{MS}^{(5)} = 246 \pm 7 \text{ MeV}$$

 $\alpha_{S}(M_{Z}) = 0.1210 \pm 0.0006$
 $P(\chi^{2}) = 75\%$

 α_S = const., total errors (outer error bars):

$$P(\chi^2) = 1.1 \cdot 10^{-5}$$

- Now more values with higher accuracy available
- α_S of "homogeneously" determined from PETRA to LEP2 energies

QCD expectation:

$$C_{\Delta}=3$$
, $C_{F}=4/3$, $N_{F}=5$

$$\begin{split} \alpha_{\rm S}(\sqrt{s}) &= \frac{1}{\beta_0 l} - \frac{\beta_1 \ln l}{\beta_0^3 l^2} + \frac{1}{\beta_0^3 l^3} \left[\frac{\beta_1^2}{\beta_0^2} (\ln^2 l - \ln l - 1) + \frac{\beta_2}{\beta_0} \right] \\ l &= \ln(\sqrt{s}/\Lambda_{\overline{\rm MS}})^2 \\ \beta_0 &= \frac{1}{12\pi} \left(33 - 2N_f \right) \\ \beta_1 &= \frac{1}{24\pi^2} \left(153 - 19N_f \right) \\ \beta_2 &= \frac{1}{3456\pi^3} \left(77139 - 15099N_f + 325N_f^2 \right) \end{split}$$

Good agreement with world average based on NNLO QCD

as Summary

- LEP established resummed calc for event shape work well at PETRA energies
- LEP tuned MC models (PYTHIA) capable of describing data down to 14 GeV
- Consistent picture of individual α_s results
- Hadronisation uncertainties at 14 GeV as large as renormalisation scale ambiguity
- New PETRA results now better comparable with LEP (values+systematics)
- Results consistent with other measurements and methods

```
\alpha_{\rm S}(M_{\rm Z^0}) = 0.1194^{+0.0083}_{-0.0070}
                                              (PETRA)
\alpha_{\rm S}(M_{\rm Z^0}) = 0.121 \pm 0.006 \; ({\rm LEP + SLC})
\alpha_{\rm S}(M_{\rm Z^0}) = 0.120 \pm 0.007 \text{ (LEP2)}
```


Power Corrections

- Classical method to estimate NP effects: MC models
 - PYTHIA, HERWIG, ARIADNE ...
 - numerous parton shower + fragmentation parameters
- Promising alternative: "power corrections"
 - Parametrise unknown but analytical behaviour of the physical strong coupling constant around the Landau pole Λ (0...2GeV)
 - Dokshitzer, Marchesini, Webber (DMW): NP structure due to soft gluon radiation at $\mu \approx \Lambda$

$$\langle y \rangle = \langle y \rangle^{\rm PT} + \mathcal{D}_y \mathcal{P}$$
 (means)
$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}(y) = \frac{\mathrm{d}\sigma^{\rm PT}}{\mathrm{d}y}(y - \mathcal{D}_y \mathcal{P})$$
 (distributions)

$$\mathcal{P} = \frac{4C_F}{\pi^2} \mathcal{M} \frac{\mu_{\rm I}}{Q} \left[\alpha_0(\mu_{\rm I}) - \alpha_{\rm S}(\mu_{\rm R}) - \beta_0 \frac{\alpha_{\rm S}^2(\mu_{\rm R})}{2\pi} \left(\ln \frac{\mu_{\rm R}}{\mu_{\rm I}} + \frac{K}{\beta_0} + 1 \right) \right]$$

- α_0 is the only NP parameter!
- α_0 is universal

$$\frac{\alpha_0(\mu_{\rm I})}{\alpha_0} \equiv \frac{1}{\mu_{\rm I}} \int_0^{\mu_{\rm I}} \mathrm{d}\mu \, \alpha_{\rm S}(\mu)$$

Power Corrections to Distributions

Observable specific part is D_v:

 \Rightarrow T, M_H, C: shift

 \Rightarrow B_T, B_W: shift+squeeze

(y₂₃: no 1/Q contribution)

y	$\mathcal{D}_y = \mathcal{D}_y(\alpha_{\mathrm{S}}, y)$
1-T	2
$M_{ m H}^2$	1
C	3π
B_{T}	$\ln(1/y) + D_T(y, \alpha_S(yQ))$
B_{W}	$\frac{1}{2}\ln(1/y) + D_1(y, \alpha_{\mathrm{S}}(yQ))$

Test of DMW ansatz:

- Use mod. ln(R) matching for PT part
- Perform simultaneous (α_s, α_0) fits to all available event shape spectra Available data sets:

Accelerator	\sqrt{s} [GeV]	1-T	$M_{\rm H}$ $B_{\rm T}$, $B_{\rm W}$, C
PETRA (JADE, TASSO)	12-47	10200	0 43700
PEP (HRS, MARK II)	29	28300	
TRISTAN (AMY)	55-58	1900	
LEP I (ADLO*)	91		$O(10^6)$
SLC (SLD)	91		37200
LEP II (ADLO*)	133-189		15600

JADE is the only contribution for new observables below M₇

... covering the energy range $\sqrt{s} = 14...189$ GeV!!!

DMW Fits (I)

Good description of the data (T, C, B_T) within the kinematical limit of the predictions

DMW Fits (II)

- Excess in 3 jet region for less inclusive observables (M_H,B_W) at PETRA energies!
- NB: also problems with PT prediction for B_W

DMW Fits to Mean Values

[Does not include update at 14+22 GeV]

(a_s,a_0) -Results

- Individual results consistent within 1-2σ of total errors
- α_0 universal within 20% uncertainty level of the Milan factor (stemming from $O(\alpha_s^2)$ evaluation of power corrections)
- But: $\alpha_s^{(pow.corr)} < \alpha_s^{(MC)}$ due to minor/missing squeeze of PT spectrum (fit chooses small α_s to compensate; big effect for jet broadening variables!!!)

Power Corrections vs. MC Predictions

MPI Colloquium "QCD Studies with the Resurrected JADE Data"

PC/MC corrections expressed by means of corrections factors:

- T, C, B_T with "similar" corrections
- M_H, B_W with strongly deviating corrections
- "Missing squeeze" (w.r.t. MC prediction) is compensated by small α_s values

Missing NP Terms?

- Explore possible missing (higher order) terms by fits to separate data sets: √s<M_z, √s ³M_z, ...
 - Large systematic effects for B_T, B_W

Extended Power Corrections

- Evidence for additional terms probably behaving ∞ ln(Q)/Q
 - Extended power corrections?
 - Missing PT terms?
 (effect partially reproduced by redefining x_μ)
- Log enhanced power corrections expected due to mass effects (but expected effect for B_w not as large)

Power Corrections to y₂₃

- DMW: 1/Q coefficient = 0
 ...confirmed by fit
- Evidence for additional terms probably behaving

 ¹/Q²
- Need 14+22 GeV data to see the effect!

		$\alpha_S(M_{Z^0})$	$A_{10}[GeV]$	$A_{20}[\text{GeV}^2]$	$\chi^2/\mathrm{d.o.f.}$
I	pQCD	0.1147 ± 0.0005	_	_	59.7/100
	pQCD	0.1152 ± 0.0005	_	_	151/107
П	$pQCD+A_{10}/Q$	0.1124 ± 0.0006	0.062 ± 0.008	_	98.2/106
	$pQCD+A_{20}/Q^2$	0.1133 ± 0.0005		2.25 ± 0.18	71.2/106
	$pQCD+A_{10}/Q + A_{20}/Q^2$	$0.1128{\pm}0.0007$	0.018 ± 0.014	1.94 ± 0.31	69.7/105

Power Corrections Summary

- PETRA data discriminate between "good" (T, C, B_T) and "bad" (M_H, B_W) observables (w.r.t. of DMW model)
- α_0 universal at 20% level
- DMW (for distributions) different from MC prediction

$$\rightarrow \alpha_{\text{S}}^{\text{(pow.corr)}} < \alpha_{\text{S}}^{\text{(MC)}}$$

- Indication of higher order terms
 (B_W, y₂₃) may inspire theorists?
- Combined means+distributions:

$$\alpha_{\rm S}(M_{\rm Z^0}) = 0.1175^{+0.0031}_{-0.0021}$$

 $\alpha_{\rm 0}(2~{\rm GeV}) = 0.503^{+0.066}_{-0.045}$

MPI Colloquium "QCD Studies with the Resurrected JADE Data"

Consistency with other measurements

More and improved PC calculations needed!

Colour Factors from Event Shapes

Relative weights of fundamental vertices determined by QCD gauge structure:

$$C_F = 4/3$$
, $C_A = 3$, $T_f N_f = 1/2N_f$

MPI Colloquium "QCD Studies with the Resurrected JADE Data"

Colour structure known for event shape

PT part

$$A \propto C_F$$
, $B = B(C_A, C_F, N_F)$
 $NLLA = NLLA (C_A, C_F, N_F)$

- Running α_S $\beta_0 = \beta_0 (C_A, N_F), \beta_1 = \beta_1 (C_A, C_F, N_F)$
- Power Corrections

$$P = P(C_A, C_F, N_F)$$

$$M = M(C_A, N_F)$$

$$D_V = D_V(C_A, C_F, N_F)$$

Reduced model dependence!

(i.e. no bias from colour structure of MC)

Results

	Fit α_S and α_0 and		Fix α_0 and N_f and		
	$(C_A \text{ or } C_F \text{ or } N_f)$		fit $\alpha_{\rm S}$ and C_A and C_F		
	1-T	C	1-T	C	QCD
			2.7 ± 0.2	3.0 ± 0.5	3
C_F	1.4 ± 0.3	1.5 ± 0.4	1.3 ± 0.2	1.3 ± 0.5	4/3
N_f	6.4 ± 1.2	4.9 ± 3.0	_	_	5

Combined results:

$$C_F = 2.84 \pm 0.24$$

$$C_A = 1.29 \pm 0.18$$

...competitive with 4 jet angular correlation analyses

Need JADE data to constrain the fit

Longitudinal Cross Section S₁

Differential cross section for inclusive hadron production in e+e-® g,Z ® h+X

$$\frac{1}{\sigma_{\rm tot}} \cdot \frac{\mathrm{d}^2 \sigma^h}{\mathrm{d} \boldsymbol{x} \ \mathrm{d}(\cos \boldsymbol{\theta})} = \frac{3}{8} \left(1 + \cos^2 \boldsymbol{\theta} \right) \left[\mathcal{F}_T^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\sin^2 \boldsymbol{\theta} \right) \left[\mathcal{F}_L^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right] + \frac{3}{4} \left(\cos \boldsymbol{\theta} \right) \left[\mathcal{F}_A^h(\boldsymbol{x}) \right$$

...contribution to fragmentation function $F^h(x)$

- = $2p/\sqrt{s}$: fractional momentum of particle
- $= \angle$ (incoming particle, outgoing hadron)

$$\frac{\sigma_{T,L}}{\sigma_{\text{tot}}} \equiv \frac{1}{2} \sum_{h} \int dx \ x \cdot \mathcal{F}_{T,L}^{h}(x)$$

$$\frac{1}{\sigma_{\rm tot}} \cdot \frac{\mathrm{d}\sigma^{\rm ch}}{\mathrm{d}(\mathbf{q} \cdot \cos \theta)} = \frac{3}{8} \eta^{\rm ch} \left[\frac{\sigma_L}{\sigma_{\rm tot}} \left(1 - 3 \cos^2 \theta \right) + \left(1 + \cos^2 \theta \right) \right]$$

- measure cos(q) distribution of charged particles
- fit r_L/r_{tot} and h^{ch} (corrects for neutral particles)

contribution from gluon radiation in quark/antiquark system

asymmetric...

not considered because no experimental distinction between quark/anti-quark

Results

$$\rho_L/\rho_{tot} = 0.067 \pm 0.011$$

Dominant errors:

- limited data statistics (combined 35+44GeV analysis)
- limited MC statistics (preprocessed samples)

$$\left(\frac{\sigma_L}{\sigma_{\text{tot}}}\right)_{\text{PT}} = \frac{\alpha_S}{\pi} + 8.444 \left(\frac{\alpha_S}{\pi}\right)^2$$

$$\alpha_{\text{S}}(36.6 \text{ GeV})\text{=}~0.150 \pm 0.020$$

Power corrections:

$$\alpha_{\rm S}({\rm M_Z}) = 0.126 \pm 0.020$$

 $\alpha_{\rm O}(2{\rm GeV}) = 0.3 \pm 0.3$

... not fixed as yet due to low data+MC statistics

MPI Colloquium "QCD Studies with the Resurrected JADE Data"

$$\frac{\sigma_L}{\sigma_{\text{tot}}} = \left(\frac{\sigma_L}{\sigma_{\text{tot}}}\right)_{\text{PT}} + a_{\sigma_L} \cdot \frac{16\mathcal{M}}{3\pi^2} \frac{\mu_I}{\sqrt{s}} \cdot \left(\alpha_0(\mu_I) - \alpha_S(\mu) + \mathcal{O}(\alpha_S^2)\right)$$

x Distribution

Momentum spectrum: $\xi = -\ln(x)$

MLLA calculation (Fong, Webber):

$$F_q(\xi, Y) = \frac{N(Y)}{\sigma \sqrt{2\pi}} \cdot \exp\left(\frac{k}{8} - \frac{s\delta}{2} - \frac{(2+k)\delta^2}{4} + \frac{s\delta^3}{6} + \frac{k\delta^4}{24}\right)$$

$$Y \equiv \ln \frac{\sqrt{\varepsilon}}{2\Lambda_{\text{eff}}}$$

$$\delta \equiv \frac{\xi - \langle \xi \rangle}{\sigma}$$

$$\langle \boldsymbol{\xi} \rangle \equiv \langle \boldsymbol{\xi}(\boldsymbol{Y}) \rangle = \frac{\boldsymbol{Y}}{2} \left(1 + \frac{\rho}{24} \sqrt{\frac{48}{\beta \boldsymbol{Y}}} \right) \cdot \left[1 - \frac{\omega}{6 \boldsymbol{Y}} \right] + \mathcal{O}(1)$$

$$\langle \xi_0 - \rangle \langle \xi \rangle \approx \frac{3\rho}{32C_A} \approx 0.35$$

with $N, k, s, \sigma, \beta, \rho, \omega$ known functions of Y, C_A, C_F, N_f

- Test MLLA by fits to measured distributions
 22, 35 and 44 GeV (theory only valid close to ξ₀)
- Free parameters: e.g. N, Λ_{eff} , ξ_0
- Explore the predicted scale dependence of ξ_0

skewed Gaussian

PT prediction

+

Assume LPHD

(affects mainly normalisation and not shape)

↓

Hadron spectrum

Fits

- Good description of data within the kinematic boundaries
- Energy evolution consistent with QCD expectation

	ξ ₀	N	$\Lambda_{ ext{eff}}$
22 GeV	2.74±0.09	11.6±0.4	136±28
35 GeV	3.06±0.05	14.1±0.2	142±25
44 GeV	3.19±0.06	16.4±0.6	110±38

Scale Dependence

- $\xi_0(Y) = \frac{1}{2}Y + \sqrt{CY} + C$ $Y = \ln(0.5\sqrt{s} / \Lambda_{eff})$
- Use JADE + OPAL data $\sqrt{s} = 22 \dots 202 \text{ GeV}$

Reasonable description of data: $\Lambda_{\rm eff}$ =207±3 MeV

Flavour dependence

- write ξ_0 (\sqrt{s}) as linear combination of peak positions $\xi_0^{(q)}$ (\sqrt{s}) for flavour q, weighted with branching ratio $f_q(\sqrt{s})$
- $\xi_0^{(c,b)}$ $\xi_0^{(uds)} \propto 0.5$ In $(\Lambda^{(c,b)}/\Lambda^{(uds)})$ \Rightarrow flavour dependence of energy evolution
- fix $\xi_0^{\text{(uds)}}$, $\xi_0^{\text{(c)}}$, $\xi_0^{\text{(b)}}$ with OPAL data @ $\sqrt{\text{s}}$ = M_Z
- fit $\Lambda^{\text{(uds)}}$, $\Lambda^{\text{(c)}}$, $\Lambda^{\text{(b)}}$

Mass effects about 20-30%:

$$\Lambda^{\text{(uds)}} = 184 \pm 32 \text{MeV}$$

$$\Lambda^{(c)} = 239 \pm 90 \text{MeV}$$

$$\Lambda^{(b)} = 247 \pm 28 \text{MeV}$$

Conclusions

Reanalysis of JADE data...

- complements state-of-the-art studies from LEP in the lower energy part of the e⁺e⁻ continuum
- provides stringent tests of perturbative and nonperturbative aspects of QCD
- is needed for constraining (future!) QCD predictions

Keep the data and the software alive since QCD is still in progress!