Determinations of α_s at $\sqrt{s} = 14-44$ GeV Using Resummed Calculations

Pedro Movilla Fernández Max-Planck-Institut für Physik München (pedro@mppmu.mpg.de)

- 1. Introduction
- 2. JADE Data and MC Simulation
- 3. Event Shapes at PETRA Energies
- 4. Measurements of α_{s}
- 5. Summary and Conclusions

0

1. Introduction

Running of α_{s}

- Power corrections for event shapes 0 Eur. Phys.J. C22 (2001), 1 [hep-ex/0105059] Nucl. Phys.B (Proc. Suppl.) 74 (1999), 384 [hep-ex/9808005]
- Gauge structure of QCD $(C_{A}, C_{F}, T_{f} \cdot n_{f})$ 0 from event shapes

JADE provides valuable e⁺e⁻ data

for more stringent QCD tests, e.g.:

Eur.Phys.J. C1 (1998), 461 [hep-ex/9708034] **Phys.Lett. B459 (1999), 326** [hep-ex/9903009]

Eur. Phys.J. C21 (2001), 199 [hep-ex/0012044]

Longitudinal und transverse cross section $\sigma_{_{\rm LT}}$ 0 Phys. Lett. B517 (2001), 37 [hep-ex/0106066]

Now: can utilise data down to $\sqrt{s} = 14 \text{ GeV}$ due to the successful resurrection of original JADE simulation and event reconstruction software

The JADE Experiment

Pedro Movilla Fernández, MPI für Physik, München

$<\sqrt{s}>$ [GeV]	\sqrt{s} -range[GeV]	period	\mathcal{L} [pb ⁻ 1]	MH data
14.0	14.0	JulAug. 1981	1.46	1734
22.0	22.0	JunJul. 1981	2.41	1390
34.6	33.8 - 36.0	Feb. 1981 - Aug. 1982	61.7	14372
35.0	35.0	FebNov. 1986	92.3	20925
38.3	38.3	OctNov. 1981	8.28	1587
43.8	43.0-46.6	Jun. 1984 - Oct. 1985	28.8	3940

XXXVIIth Rencontres des Moriond, QCD and High Energy Hadronic Interactions, 19th March 2002

7

3. Event Shapes at PETRA Energies

Event shape observables commonly used for α_s measurements:

• Thrust T
$$T = max_{\vec{n}} \left(\frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|} \right) \Rightarrow \vec{n}_{T}, H_{\pm} \checkmark B_{\pm} = \frac{\sum_{i \in H_{\pm}} |\vec{p}_{i} \times \vec{n}_{T}|}{2\sum_{i} |\vec{p}_{i}|}$$

• Heavy jet mass M $M_{\pm}^{2} = max(M^{2}, M^{2})$

• Heavy jet mass
$$M_{H} = max(M_{+}^{2}, M_{-}^{2})$$

• Jet broadening
$$B_T, B_W$$
 $B_W = max(B_+, B_-)$
 $B_T = B_+ + B_-$

C parameter $C = 3(\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_2), \lambda_i EV \text{ of } \Theta_{ij} = \frac{\sum_k p_k^i p_k^j / |\vec{p}_k|}{\sum_k |\vec{p}_k|}$ 0

- 0
- Differential 2-jet rate y_{23} Jet resolution: $y_{ij} = 2 \min \left(E_i^2, E_j^2 \right) \left(1 \cos \Theta_{ij} \right) / \sum_k E_k^2$
 - Combine particles i,j with smallest y_{ii} into pseudoparticles and proceed until $y_{ij} > y_{cut} = y_{23}$ for 2 remaining pseudoparticles.

Measured and Simulated Event Shapes (Detector Level)

bb Event @14 GeV

bb Events

• Distortion of the distribution due to electroweak effects

Pedro Movilla Fernández, MPI für Physik, München

XXXVIIth Rencontres des Moriond, QCD and High Energy Hadronic Interactions, 19th March 2002

Event Shape Data vs. QCD MC (Hadron Level)

Correction procedure:

- bb̄ subtraction at detector level (fraction ≈ 9%)
- bin-by-bin unfolding with factors K(i)=MC^{had}(i)/MC^{det}(i) based on udsc MC samples

Performance of QCD models:

- Pythia 5.7 (OPAL): good overall description of data
- Herwig 5.9 / Ariadne 4.08: moderate at 14+22 GeV, slightly better at higher c.m.s. energies
- Jetset 6.3 (JADE): good at 14+22 GeV, slightly worse at higher c.m.s. energies
- Cojets 6.23: strongly disfavoured at 14+22 GeV, remains worse at higher c.m.s. energies

Pedro Movilla Fernández, MPI für Physik, München XXXVIIth Rencontres des Moriond, QCD and High Energy Hadronic Interactions, 19th March 2002

4. Measurements of α_s

• pQCD prediction $R(y)=\int^y dy' 1/\sigma \cdot d\sigma/dy'$ for event shape y:

NLO: $R(y)=1+A(y)\cdot\alpha_{s}+B(y)\cdot\alpha_{s}^{2}$ NLLA: $R(y)=(1+C_{1}\cdot\alpha_{s}+C_{2}\cdot\alpha_{s}^{2})\exp\{Lg_{1}(\alpha_{s}L)+g_{2}(\alpha_{s}L)\}$ $L=\log(1/y)$

Combine NLO with NLLA (ln(R)-matching).

• Estimation of hadronisation effects:

Pythia 5.7 (OPAL)/Jetset 6.3 (JADE)Ariadne 4.08Herwig 5.9... MLLA parton shower + cluster fragmentation

• Fit QCD + bin-by-bin hadronisation correction (of cumulative prediction)

Systematic Errors

• Experimental:

MH selection cuts $(E_{vis}, p_{bal}, p_{miss}, \cos \theta_T, n_{ch})$ Merging of tracks and clusters Data reconstruction version (9/87, 5/88)

• Hadronisation:

Tune uncertainties $(b, \sigma_q, \epsilon_c, \epsilon_b, Q_0)$ Pythia 5.7 (OPAL) / Jetset 6.3 (JADE) [large tune differences due to L=1 meson multiplets and diquark suppression factors]

Alternative MC: Herwig, Ariadne

• pQCD:

Renormalisation scale: $x_{\mu} = 0.5 \dots 2.0$ Matching scheme: $\ln(R)$, $\ln(R)$ mod., R, R mod.

Pythia 5.7 (OPAL) vs. Jetset 6.3 (JADE)

J: JADE tune w/o L=1 multiplets & 'old' diquark suppression factors
J': JADE tune with L=1 multiplets & current diquark suppression factors
O: OPAL tune with L=1 multiplets & current diquark suppression factors

XXXVIIth Rencontres des Moriond, QCD and High Energy Hadronic Interactions, 19th March 2002

XXXVIIth Rencontres des Moriond, QCD and High Energy Hadronic Interactions, 19th March 2002

5. Summary and Conclusions

- Resurrection of JADE software: e^+e^- data at $\sqrt{s}=14-44$ GeV ready for state-of-the-art QCD studies
- Performance of LEP tuned hadronisation MC at PETRA energies: Pythia o.k., Ariadne/Herwig moderate (need re-tune?), Cojets disfavoured
- Measurements of α_s : Resummed NLO+NLLA reliable down to $\sqrt{s} = 14 \text{ GeV}$

- First determinations at 14+22 GeV
- Much higher precision than in old PETRA publications
- Method consistent with LEP/SLC measurements
- Hadronisation uncertainties at 14 GeV $\approx O(\Delta \alpha_{s}^{\text{ren.scale}})$
- Fit of QCD expectation: $\alpha_s = 0.1213 \pm 0.0006$ $\chi^{2/d.o.f.} = 8.3/11$ (exp. errors)
- Fit of α_s =const: $\chi^{2/d.o.f.} = 43.1/11$ (tot. errors) $P(\chi^2) \approx 10^{-5}$